Hydrogen intercalation of graphene grown on 6H-SiC(0001)

نویسندگان

  • Somsakul Watcharinyanon
  • Chariya Virojanadara
  • Jacek Osiecki
  • A A Zakharov
  • Rositsa Yakimova
  • Roger Uhrberg
  • Leif I Johansson
  • S. Watcharinyanon
  • C. Virojanadara
  • J. R. Osiecki
  • A. A. Zakharov
چکیده

Atomic hydrogen exposures on a monolayer graphene grown on the SiC(0001) surface are shown to result in hydrogen intercalation. The hydrogen intercalation induces a transformation of the monolayer graphene and the carbon buffer layer to bi-layer graphene without a buffer layer. The STM, LEED, and core-level photoelectron spectroscopy measurements reveal that hydrogen atoms can go underneath the graphene and the carbon buffer layer and bond to Si atoms at the substrate interface. This transforms the buffer layer into a second graphene layer. Hydrogen exposure results initially in the formation of bi-layer graphene islands on the surface. With larger atomic hydrogen exposures, the islands grow in size and merge until the surface is fully covered with bi-layer graphene. A  30 ) 3 3 ( R  periodicity is observed on the bi-layer areas. ARPES and energy filtered XPEEM investigations of the electron band structure confirm that after hydrogenation the single -band characteristic of monolayer graphene is replaced by two -bands that represent bi-layer graphene. Annealing an intercalated sample, representing bi-layer graphene, to a temperature of 850 oC, or higher, reestablishes the monolayer graphene with a buffer layer on SiC(0001).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micro-Raman analysis of the influence of hydrogen intercalation on the epitaxial graphene grown on 4H-SiC(0001) substrate K.Grodecki

It is commonly accepted that properties of epitaxial graphene (EG) grown on SiC are determined by interaction with substrate. It was found, that hydrogen intercalation of EG grown on SiC(0001) substrates by sublimation is a promising method to increase the mobility of carriers [1]. As verified by Raman spectroscopy [2] sublimation grown samples show much stronger interaction with the SiC substr...

متن کامل

Si intercalation/deintercalation of graphene on 6H-SiC(0001)

The intercalation and deintercalation mechanisms of Si deposited on monolayer graphene grown on SiC(0001) substrates and after subsequent annealing steps are investigated using low-energy electron microscopy (LEEM), photoelectron spectroscopy (PES), and micro-low-energy electron diffraction (μ-LEED). After Si deposition on samples kept at room temperature, small Si droplets are observed on the ...

متن کامل

Large homogeneous mono-/bi-layer graphene on 6H-SiC(0001) and buffer layer elimination

In this paper we discuss and review results of recent studies of epitaxial growth of graphene on silicon carbide. The presentation is focused on high quality, large and uniform layer graphene growth on the SiC(0001) surface and results of using different growth techniques and parameters are compared. This is an important subject because access to high quality graphene sheets on a suitable subst...

متن کامل

Hot carriers in epitaxial graphene sheets with and without hydrogen intercalation: role of substrate coupling.

The development of graphene electronic devices produced by industry relies on efficient control of heat transfer from the graphene sheet to its environment. In nanoscale devices, heat is one of the major obstacles to the operation of such devices at high frequencies. Here we have studied the transport of hot carriers in epitaxial graphene sheets on 6H-SiC (0001) substrates with and without hydr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011